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Anomalous bending of a polyelectrolyte
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We report on a study of the shape of a stiff, charged rod that is subjected to equal and opposite force couples
at its two ends. Unlike a neutral elastic rod, which forms a constant curvature configuration under such
influences, the charged rod tends to flatten in the interior and accumulate the curvature in the end points, to
maximally reduce the electrostatic self-repulsion. The effect of this nonuniform bending on the effective
elasticity and on the statistical conformations of a fluctuating charged rod is discussed. An alternative definition
for the electrostatic persistence length is suggested. This definition is found to be consistent with a correspond-
ing length that can be deduced from the end-to-end distribution function of a fluctuating polyelectrolyte.
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I. INTRODUCTION AND SUMMARY charged rod. In calculating the energy of the bent segment of

the PE, Odijk assumed that the shape of this segment is not

Given the ubiquity of Charged linear structures in bio|ogy, affected by the COU|.Omb interactions, _an assu_mption shared

and their fundamental importance to essential processes Ry all other expressions for the effective persistence length
living systems, the relationship of Coulomb interactions to®f @ PE of which we are currently awaie2—14. This leads

the mechanical properties of polyelectrolytes is a topic of© & remarkably successful analytic expression for the persis-

. . tence lengti{see Eq.6) in the following sectioh This ap-
conadgrable Interest. Inde_ed, there have peen a number ﬁ?)ximatignﬂdoes nqogt Jvork in all regimges; in pirhevious vF\)/ork,
theoretical[1-6] and experimentdl7—9] studies on the be- o haye identified the regimes in which this assumption is
havior of charged polymeric chains, with an eye to elucidatgqrrect and other regimes in which it fails to give rise to
the various influences that control their equilibrium and staccyrate answefds,16.
tistical characteristics. In Spite of the considerable effort ex- The genera' question Of the app“cabmty of the notion Of a
pended, there is, as yet, no comprehensive theoretical dgersistence length to a PE in the rodlike limit was explored
scription of the way in which charged chains respond toin the above mentioned wofl 5,16 by the current authors.
environmental influences. This study was conducted in the context of a calculation of

The basic theoretical model of a polyelectrolyte chainthe thermal distribution of end-to-end distances of an en-
(PE) is simplicity itself. A rod with an intrinsic elasticity semble of rodlike PE’s. It was found that there are regimes in
guantified in terms of a bending modulus carries chargesyhich this distribution differs substantially from the corre-
either uniformly distributed along it, or concentrated atsponding distribution for neutral WLC’s. When this is the
points along its axis. The energy of this chain consists enease, the effective persistence length associated with the end-
tirely of the elastic energy associated with bending of the rodo-end distance distributiofr radial distributionis not con-
and the electrostatic energy of interaction of the charges ogistent with the formula derived in Rdfl1]. The effective
the rod. The electrostatic interaction may be screened bpersistence length is obtained in Rdf$5,16 by matching
counterions in solution in the vicinity of the rod. This screen-the PE distribution as closely as possible to the radial distri-
ing is assumed to be Debye-like. bution of uncharged wormlike chaif&7].

The characterization of the effects of intrinsic stiffness of In this paper, we undertake a calculation of the effective
a neutral inextensible, or wormlike, chaLC) in terms of  persistence length. Our approach is identical in overall phi-
a persistence lengtlis by now well establishedl10]. This  losophy to that utilized by Odijk11]. A rod is subjected to
qguantity describes the exponential decay of correlations imxternal torques that causes it to bend. The enérgythe
the orientation of the backbone of a WLC. It is directly re- bent rod is calculated and related #g, the difference in
lated to the energy stored in a short segment of the WLGngles at the two ends, as shown in Fig. 1. The precise rela-
which has been bent as a result of the application of forcéionship between the energyin the rod and the anglé, is
couples at its end points. An extension of the persistence )
length to the case of a PE, due to Odjjkl] utilizes this i: b €p 1)
basic approach to obtain that quantity in the case of a stiff, keT 2 L°
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.- of a fluctuating PE described by the radial distribution func-
tion [15,14.

bent rod The rest of the paper is organized as follows. Section |

/ introduces the basic elastic model for PE’s, followed by a

Ptaad ~~u general description on how one obtains the equilibrium
S shape of a PE in Sec. Ill. The results for the shape of a PE
~ are presented in Sec. IV, and it is shown in Sec. V how a
~ persistence length can be deduced from the PE profile. The

FIG. 1. The bent rod. The anglé, between the two ends is Sudgested electrostatic persistence length is then compared

illustrated. The relationship between the angjeand the energy ~ With Odijk's formula and also the persistence length that one
stored in the bent rod is displayed in Ed). can extract from the radial distribution of the PE in Sec. VI,

which is then followed by concluding remarks in Sec. VII.
Here, L is the total length of the rod. In Odijk's approach, Some details of the calculations are relegated to appendixes.
it is assumed that the bent rod takes the form of an arc of a
circle. This is true if all of the energy is elastic. However, in . MODEL ELASTICITY FOR POLYELECTROLYTES
the case of interest hgre, a significant portion of th_e energy A noted above, we treat the polyelectrolyte as an inex-
may be electrostatic in nature. The fundamental improve;

L . . ._“tensible charged rod. The total energy of such a rod is the
ment over Odijk’s calculational method is that we determine O o .
S sum of the intrinsic elasticity and the screened electrostatic

the actual shape of the bent rod, taking into account the , g
effects of screened and unscreened electrostatic interactio |gteract|0n energy. We assume that the electrostatic interac-
) Mn is screened by counterions that adjust more or less in-

We assume that the shape taken is controlled by the require;

ment that, in the absence of thermal fluctuations, the ro tantaneously to changes in the overall shape of the polyelec-

minimizes its total energy. The expression obtained for ther0|yte' Because of the inextensibility of the PE's under
\ o 9y pres . consideration[11,17], we adopt Kratky and Porod WLC
rod’s shape is directly related to the inverse of the Hamil-

tonian that relates the energy of the bent rod to its dis'[ortiorqnOOIeI to describe the bending energy of the clid#. In

from a straight line. This approach leads to results for thethIS model, polymers are represented by a space aysje

shape of the rod and to alterations in the energy and thgfS ﬁfunhctl.on. of .the agc length paramesefThe total energy
persistence length as defined in Ef). of the chain Is given by
We find that there are, in certain regimes, dramatic differ- 2 — dr(9)—r(s")]
ences between the shape of a short PE under the influence of i _ @ - (M) EJL e
= + dsds
force couples at its ends and the shape of a similarly torqued ksT 2 Jo ds 2J)o Ir(s)—r(s")|
WLC. In such regimes, the curvature of a PE is concentrated 2
at its ends, while the WLC distorts into a circular arc, as
illustrated in Fig. 2. In regimes in which the shapes of the PBvheret is the unit tangent vector. The second term in the Eq.
and WLC coincide, we find that the Odijk’s formula for the (2) is the Debye-Huakel potential, in which screening is con-
effective persistence length is accurate. However, when theolled by the Debye lengtix ! that is a measure of the
shape of the bent PE is inconsistent with the assumption dbnic strength of the solvent. The quantiBs=¢g/b? is the
constant curvature, the electrostatic persistence length dstrength of the electrostatic interaction withthe average
rived from Eq.(1) deviates from Odijk’s result. On the other separation between neighboring charges égere?/ ekgT
hand, this persistence length is compatible with the persisthe Bjerrum length. The quantity is the dielectric constant
tence length deduced from the statistics of the conformationsf the ion-free solvent.
The chain is assumed to be sufficiently stiff so that ex-
-~ cluded volume does not play a role. We will consider PE’s
’ whose length_ is either comparable with or long compared
to the intrinsic persistence length,. In both cases, we re-
S . > strict our consideration to regions in which the combination
energy-minmizing ( (@) \ of intrinsic stiffness and repulsive strength of the Coulomb
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shape for a charged (b) neutral | interaction keeps the chains in their rodlike lifii9]. We do
rod —_ chain ’ not take into account the fluctuation in the charges localized
N P to the chain and in the counterion system that can give rise to
attractive interactions leading to chain collapge,21].
\ Orienting the tangent vector at one end of the KB),

h so that it points in the positive direction, we characterize
FIG. 2. (Color online@ The energy-minimizing shape of a t(S) by two angles of rotation: 6,(s)=arctaimty(s)/

charged rod with full treatment of electrostatic interactions and end/l_ti(s) —tz(s)] in the xz plane andé,(s) = arctart,(s)/

effects [plot (a)]. Plot (b) corresponds to the energy-minimizing T2y 12 . .
shape of a WLC. A segment of a neutral WLC forms an arc of a 1-6(s) ty(s)] in the yz plane. For polyelectrolytes in

circle, while the curvature of a PE segment can be concentrated élfle rodlike limit, 6,(s) and t?y(s) are small. With the help of
its ends. the relationr(s)—r(s’) =% dut(u), we are able to expand

\
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both the bending energy and the screened Coulomb interac-  Ill. THE GENERAL STRATEGY FOR FINDING
tion about the rodlike configuration up to quadratic order in THE ENERGY-MINIMIZING SHAPE
6(s) = (6x(s), 6,(s)) following Ref.[10,11]. In this case, Eq. OF A BENT POLYELECTROLYTE

(2) can be written as As noted previously, the principal advance in our ap-

2 2 proach to the bending energy of a PE is that we calculate the
€ lpo(t [(dax(s)) +(d9y(s)) ] actual shape of the bent rod. Here, we discuss the general

keT 2 Jo ds ds approach to this calculation. The energy of the rod in By.
can be expressed as the expectation value of the energy op-
+EJLILdS déﬁ(s S'){b‘ (S)G(S,) erator’H, i.e.,
2J)oJo ' e
E 1(L(L
+60,(s)0y(s")}, €©)] kB_T:Efo J; dsds 6(s)H(s,s')0(s"). (7)

where the electrostatic kernel is given by where, the bilinear “energy” operator, is equal to

[1+K(s;— 1) ] <27 d?
(Sy—51)° H=—4€po——d(s—s")+ BL(s,S'). (8

ds?
X{(s2=51)[O(s—51) ~O(s—5;)]6(5—8")

L L
L(s,s')= fo dslfS ds,
1

To obtain the response of a polyelectrolyte to force

—[O(s—51)—O(s—5,)][O(s'—5) couples at its two ends, we minimize the energy expression
in Eq. (7) with respect tod, ,(s), subject to the following

-0(s’'—sy) 1}, (4 boundary conditions:

with ®(s) the Heaviside step function. 0,(0)=0,

Equations(3) and (4) constitute the expression for the

energy utilized by Odijk in his calculation of the electrostatic 0,(0)=0,

persistence length. The essence of this calculation is to con-

strain the difference between the orientation of the tangent 0,(L)= 6oy,

vectors at each end of the roé(L)— 6(0)= 6, and then to

determine the energ§ of the bent rod with the use of the 0y(L)= 6oy, (9

formulas in Egs.(3) and (4). The persistence length, is

then given by Eq(1). In his calculation of the total energy of where the angleg,, and ¢,, are assumed to be very small,

a bent segment of PE, Odijk utilizes the approximation thain order to keep the chain in the rodlike limit. The resulting
the segment is characterized by a constant curvdtlig Euler-Lagrange equations are completely decoupled with re-
That is, he assumes that the electrostatic interaction does ngpect to both variableg,(s) and 6,(s); therefore, we focus
cause the shape of the PE to differ from that of a WLCon planar deformations that can be characterized entirely in
segment. According to this picturd, ,(s) are linear func- terms of a single anglé(s). In this case, the boundary con-
tions ofs. One can then obtain an explicit, analytical expres-ditions are simply

sion for the total energy of a bent polyelectrolyte segment,

which leads directly to the following prediction for the per- 6(0)=0,

sistence length of such a charged rod through (Eg.

O(L)=6,. (10
€5="4 507t € odiik » 5 N . )
P PO T Odik ©® We enforce these boundary conditions via Lagrange multi-
where pliers by adding the terms
L
¢ _ELZ ol 1 N 5 N 8 - fo {NoS(s)O(s)— N\ S(s—L)A(s)}ds 11
Odijk— 12 KL (KL)Z (KL)3
to the energy in Eq(7). Then, we seek the solution that
n 3 _ 8 ©6) minimizes the energy in terms of an eigenfunction expan-
(kL)2  (xL)3]| sion of the form
In the following section, we sketch a general method of e — .
calculating the equilibrium shape of elastic charged rods un- Omin(S) g‘o Cn¥n(S), (12

der the influence of applied bending forces. This leads to a
prescription for the calculation of persistence length baseevhere ¢,(s) are eigenfunctions of the bilinear Euler-
on the energy of the bent PE. Lagrange energy operateét in Eqg. (8).
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The solution to the minimization equation, which is now 9(5)/90
in terms of the amplitudes,,, is

1.0 300 NE—
VA (L) 7500
Nothj(0) + A i pg | BE e
=T 13 g
! 06  pemw e

wheree;’s are the eigenvalues of E(B). The values of;’s 04 =
depend on the three dimensionless paramefirs,«<L, and
€p0/L. Rotational invariance implies that there must be one 0.2 neutral chain
eigenfunction y(s) = 1/yL, with eigenvalues,=0. This is s/L
due to the fact that simply tilting the rod, which yields a 0.2 0.4 0.6 0.8 1

constant value forg(s), does not change the energy. All
other eigenfunctions possess positive eigenvalues. Equatiq:rp|
(13) shows that there is a singularity &§=0. We can re- _ 340 (gashed ling, 5L =1800(dash-dotted ling AL =7200(dot-
move thg singularity by adding a term of the form ieq jing. The neutral chain forms an arc of a cirgfepresented by
(9/2)6(s) to the energy in Eq(7). The parameteg is @ 4 straight ling. As SL increases, charged chains tends to flatten
small “gap” parameter that will be set equal to zero at themore in the interior and accumulate curvature in the end points. The
end. The quantity is thus added to the denominator of EQ. extreme range oL is intended to clearly indicate the influence of
(13), and there is no longer a singularity @=0 unlessy  charging on shape.
=0.

We adjust the Lagrange multiplieds, and A using the relevance of an energy calculation such as the one described
boundary conditions of Eq10). The two equations that lead above to the persistence length of a PE, defined in terms of

FIG. 3. (Color onling Plots of the energy-minimizing shape for
arged elastic rodgEq. (16)] at kL=10, €,,/L=0.5, andSL

to the results for tha'’s are its conformational statistics.
0(0) = L Aoth i v (0)>\o¢n(0)+>\L¢n(L) ~0 IV. NONUNIFORM BENDING OF CHARGED
JL 9 i " entg ’ ELASTIC RODS
(14) The expression fof given in Eq.(16) can also be written
” as
1 Not AL Notn(0) + AL hy(L)
o(L)=— + L =0p.
L= F g T oy 0 6(9) = A+ \[K(s,L) ~K(s,0)], 17
(15
where
The above equations reveal that the only possible way in .
which we can obtain finite values for the angles at 0 hnsl Un(S)iha(s")
K(s,s')= >, ——1—= (18)
to have N, ——\, as g—0. Let us set\g+A\ =gAJL, ' “~ p :
whereA is a constant that is set by adjusting boundary con-
ditions. The general solution fof(s) in the limit g=0 is, It is readily demonstrated that the quantkys,s’) de-
then, fined in Eq.(19) is the inverse of the energy operator in Eq.
- ) L) (8). The operatoK(s,s') has been calculated with the use of
B(8)=AreS, Un(s) n n . (1 @ cosine function basis set in Refd5,16. We utilize our
=1 € previously obtained results for the inverse operator to nu-

merically calculate the quantit§ in Eq. (16). An outline of
The limiting result of equal and opposikés makes sense the construction of the energy in this basis set is contained in
if we think of those Lagrange multipliers in terms of torques, Appendix A.
or force couples, applied at the two ends of the PE segment. In the absence of electrostatic interaction, a bent elastic
Given such a picture, we know that unless the two torquesod conforms to an arc of a circle, which is described by a
are equal and opposite, there will be an uncontrolled rotatiotinear solution for Eq(17). In Fig. 3, the energy-minimizing
of the segment. It is, in fact, possible to set up a calculatiorshapes of charged rods, witt. =10, €,,/L=0.5, and dif-
of the shape of a segment under the influence of sucferent values of3L, are compared with that of a correspond-
torques. Energy minimization yields equations for the anglesng neutral chain. As the figure clearly illustrates) that
at the ends of the segment that are precisely as given by Eqdepends linearly on arc lengthdoes not correspond to the
(14) and(15), with the\’s proportional to the torques at each minimum energy configuration of bent charged elastic rods,
end. which tend to flatten in the interior and accumulate curvature
In the following section, we calculate numerically the in the exterior(see Fig. 2 aboyeThis is in part because the
energy-minimizing shape of a charged rod and compare i¢lectrostatic self-repulsion is lower at the end points due to
with an arc of circle. This will lead to greater insight into the the reduction in repelling neighboring charges there. Figure 3
influence of energetics on the classical shape of a bent segiso highlights the fact that deviations from constant curva-
ment of PE. It will also allow us to test the fundamental ture become more pronounced as the charging strefigth
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0(s)/6, 0(s)/0

1.0 °
LO b ki=s0 ———  pL=2500 0.8 :
0g| Kl0 =-=-= =0.5 i

‘ Kg -—— ,./'/ 0.6 Shoulder
0.6 ",
_ G 0.4
0.4 L
/./" 0/2
02~
k . s/L
02 04 06 038
0.2 04 0.6 0.8 1 S/L \SC
FIG. 4. (Color online Plot of 4(s)/ 6, for a charged rod, corre- FIG. 6. (Color onling The position of the shouldes, can be
sponding to various values of the inverse screening lergtin all  obtained as the crossover point of the tangents to the various seg-

plots €,0=50 nm, 3=25 nm ! (corresponding to DNA and L ments of the profile.
=100 nm. The values of the screening parameters are

— 1 H H _ —1 H .. . . . . . .

:0'5 nm- (thick  line), K_O'l_nm (df"lSh'dOtted line «  composition of the linear profile into a piecewise linear one,
=0.05 nlm (dotted ling, and x=0.02 nm * (dashed ling re- ; \which the interior takes up a lower curvature and the two
spectively. end segments in the exterior acquire a higher curvature. The

. : . . elatively sharp changes in the slope that result in “shoul-
increases. This tendency reinforces the notion that Coulom ers’ in the profile take place symmetrically at positions

repulsion underlies the concentration of curvature near thaenoted bys, andL—s,, which can be defined in terms of
C (O]

en(\j/\?eorzatlt]/g glesrc])tiac\)/de.sti ated the influence of inverse scree the intersection points of the tangents to the various seg-
9 'fents of the profile, as illustrated in Fig. 6.

ing IengthK.and abgolute length on the shape of a bent PE The position of the shouldes. is a monotonically de-
tshegmellﬂt. Flﬂuée 4 |Ilgstrate;ftlhetif_'fe(f:_ts of atrc]:hal:ge oh creasing function ofsL as shown in Fig. 7. The effect of
€ arcleng ependence o Tn is figure, e bare per- €po/L on thes; is also illustrated in Fig. 7. As seen in the

S|stence_llengtrfp0=50_ nm and the charging parametgr figure, the shouldes, increases upon increasing the intrinsic
=25 nm - corresponding to DNA are used, and the length ersistence length of the chain. The dependencs.afn

of the segment IS set equal to 100 nm. It is apparent that creening, on the other hand, appears to be more compli-
the screening length increases, the shape of the bent segm%g{ed_ One generally expects that s increases, end ef-

de\ggtdeitsior:glrle ?/\r/]g rrlg?/reelforgllo? r;tatrr?eoéc?nggdjénces on Péects become less significant, and the valueomoves to-
Y. . d . ard zero, resulting in a smoothing of the curvature along

shape of changes in the length of the segment, keeping g : . )
e chain. However, this is true only for strong screening.

other parameters fixed. Flgure S shows h.OW ghangmg thEigure 8 represents the dependencs.ain <L in the strong
length L causest(s) to deviate from a straight line. As in charging regime, where we observe tisathas a relatively

Fig. 4, we have setp, equal to 50 nm angs equal to weak dependence on screenisgslowly increasesas L is

25 nmi g as_corrgsp_ondmg to DN_Al' The inverse SCreeNING creased and then starts decreasing with further increase in
length k in Fig. 5 is fixed at 0.1 nm-.

C ; kL.
The nonlocal electrostatic interaction seems to favor a de- One can understand the appearance of the shoulder region

as an end effect. The nonlocal nature of the electrostatic self-
9(8)/90 interaction leads to enhanced repulsion in the interior of the
PE as compared to the end segments. This is mainly due to

1.0 r-1000rm = =
T -
0.8} =0 i Se/L o Lo/L=05
0.6 02 o lo/L=0.1
* + lo/L=0.01
0.4 =z 0.15 .
0.2 - Y
£, 01} o . .
s/L . <
02 04 06 08 1 o
0.05 ° ° o
+ (o]
FIG. 5. (Color online Plot of 6(s)/6, for a charged rod for ooy + - + :
which the lengthL is allowed to vary. In all curveg ;=50 nm, 00500500 400500 600ﬂL

B=25 nm ! (corresponding to DNA andx=0.1 nnm . It is evi-

dent that longer segments behave more like a WLC in that when FIG. 7. The position of the shouldex, as a function of the
bent they take a shape with a constant curvature. This reflects theharging parametesl, for kL =0 and€,/L=0.01(crosse} 0.1
influence on the shape of the combinatieh, and is consistent (open circleg and 0.5(filled circles. As expecteds; increases as
with the tendencies indicated in Fig. 4. the rod becomes intrinsically more stiff.
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FIG. 8. (Color onling The position of the shouldes. as a
function of the screening parametet, for €,,/L=0.5 andgL
=2500. The reentrance behavior is characterized by an initial slo

increase followed by a relatively faster decay at larger values of th

screening parameter.
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1
=!8
B for kV€po/B<1
Sc,aBJ™ In 5
epoK
K—l

for k€ po/B>1,
(20

which now exhibits an initial increase in qualitative agree-
ment with Figs. 7 and 8. While this picture can qualitatively
account for the aforementioned behaviors, we have not yet
been able to achieve a quantitative characterization of the
shoulder positiors; as a function of the three-dimensionless
arameterd o /L, «L, andBL, and, in particular, compare
with the dependencies as suggested by(Ef). above, due
to the insufficiency of the numerical data.
Having obtained the shape of a charged rod numerically,

the fact that there are fewer neighboring pairs at the endve can now follow Odijk and calculate the persistence length
segments to contribute to the mutual repulsion. In otheof PE’s.
words, one might think of a crossover length scale at the two

ends, below which the intrinsic rigiditithat yields a local

resistance to bendinglominates the energetics of the chain,

while beyond that length scalgee., in the interior of the PE
it is the combination of the intrinsic rigidity and the electro-
static repulsion that controls the energetics. Interestingl

such a crossover length scale has been introduced by Bar
and Joanny in their study of the length-scale dependence o

the PE rigidity[1,2]. It is important to note that the Barrat-

Yot
I

V. DERIVATION OF THE PERSISTENCE LENGTH
USING ODIIK'S METHOD

There is a straightforward way to calculate the energy of a
bent rod, based on the expression for the angle as a function
arc length. The quantity(s) given in Eq.(17) is, to
proportional td<(s,L)
K(s,0), and the energy of a bent charged rod can be writ-
n as

\%thin an additive constant,

Joanny crossover length is defined for the crossover in the

fluctuations of the angléd(s)?) (that also has a piecewise
linear dependence os). Since the distribution of the angle
0(s) as controlled by the Hamiltonian in E() is Gaussian,
both({6(s)?) and the energy minimizing (Eq. 17 are linear
functions of H(s,s') ! [Eq. (8)]. Thus, we expect that, in

E 63 1

ksT 2 K(0,0—K(OL)" (21)

Details of the calculation leading to E@1) are presented
in Appendix B. According to the definition of the persistence

general, the two crossover length scales coincide. Barrat arldngth in terms of the energy of the bent rod, Et), we

Joanny propose an expression for the crossover length as

Sc B~ \/—€p0
¢.BJ ﬂ+4€p0K2,

which exhibits the limiting forms ofs; gy~ € ,0/B for
K\/€p0/B<1 andSC’BJ""K71 f0r K\/€p0/ﬁ>l.

(19

have

L

€e:K(0,0)—K(0,L) ~ 0,

(22

where{, is the electrostatic persistence length of the chain
as defined in the Sec. Il. It is important to note that the kernel
K(s,s') depends on the parametefi, «L, and €,/L
through the eigenvalues and eigenfunctions of @{}. Fig-

ure 9 shows the values of the electrostatic persistence length

The Barrat-Joanny crossover length shows a qualitatively . obtained by Eq(22) for kL =10 and{,,/L=0.5 at dif-

similar behavior to the shoulder positicy as described
above, except for the slow initial increase in Figfér s, as
a function ofk).

There is a way to reconcile this behavior with the Barrat-

ferent values ofBL (triangles. Odijk's persistence length as
given by Eq.(6) is also plotted in the figure for comparison
(solid line). For small values of3L, €. coincides with the

Odijk persistence lengthiqgi . As SL increases, the devia-

Joanny picture. This can be achieved by considering the fadton of ¢, and € o4 becomes more significant. The figure

that in their derivation of the expression in E49) above,

also displays the value of the electrostatic persistence length

they have neglected a logarithmic dependence in the electréhat one can infer from the distribution of end-to-end dis-
static nonlocal kernel for technical simplicity. While it is not tances of an ensemble of fluctuating rodlike PE segments
possible to calculate the correct crossover length in a comopen circley[15,16. There will be more on this subject in
pact form as in Eq(19) when the logarithmic factor is taken the following section.

into account, one can extract the limiting forms of tneg-
mentedBarrat-JoannyaBJ) crossover length as

Our general observation from the comparisor?gfwith
Cogik is that when the two quantities are equal, the bent
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FIG. 9. (Color onling The electrostatic persistence length
obtained by Eq(22) for kL =10 and{,,/L =0.5 at different values
of BL, and comparison with Odijk’s persistence length as given by 0.2 0.4 0.6 0.8 1
Eq. (6), and the electrostatic persistence length that can be deduced FIG. 10. (Color onling Comparison of the radial distribution

from the radial distribution function of PE[45,16. function of a PE(solid ling) for kL=1, ¢o/L=0.01, andpL

. . . . =360, with that of a neutral chaifdashed ling As the inset
charged rod is close in shape to an arc of a circle. That iSshows, when the two distributions do not match, the equilibrium

6(s) as a function ok is nearly a straight line as in the case configuration of a bent PE is not given by a constant-curvature
of a neutral chain. This indicates that as charging increasegyofile.

end effects become more important and the description of

PE's as neutral chains with an adjusted persistence length &ances under which the classical, energy-minimizing shape
inappropriate. It is clear that end effects play a key role in theof a PE segment does not trace out the arc of a circle.
elasticity of PE’s. Such effects are also apparent in the sta- There also exist regimes in which the conformational sta-

tistical conformations of the charged rods. tistics of PE chains in the rodlike limit are identical to those
of WLC’s with adjusted persistence lengtf22]. For such
VI. THE INFLUENCE OF “END EFFECTS” cases, PE and WLC distributions are indistinguishable to the
ON THE STATISTICAL CONFORMATION OF PE’'S unaided eye. Figure 11 illustrates an example of this regime.

) o . The distribution function of the PE witlf,q/L=0.0001,
The study of the end-to-end radial distribution function «L =100, andBL =36 000 completely obscures the distribu-

G(r) of a rodlike PE provides an excellent gauge of thetion function of a WLC with the intrinsic persistence length
statistical conformation of polymers. Using the expreSS|on€p/L:0.876. As in the previous example, the energy-

for energy given in Eq(2), we have obtained values for the minimizing shape of the PE is shown in the inset. It is clear

quantity that the energy-minimizing shape of the PE is not distin-

guishable from that of a neutral chain, as the PE also bends

with a constant curvature in this example.

_ _ . . We have found that whenever there is a virtually perfect

where El_r(lelEr(r?)'. Th_?havferagtg n Eq(ztﬁ) |stﬁver alr; collapse of the distribution function of a PE onto that of a

Zgﬁﬁ;nthgtoa givecn ilkl;]:m ineth:ngr:s@gr;)bllz' wil?r%avi- F;rr? e_n d_neutral chain, the persistence length of the neutral chain fol-

_ i R o+ :

to-end distance equal 115,16, lows Odijk’s prediction, in that{,={.+ €, wheref, is
With the use of the radial distribution function, we have G(r)

been able to compare the statistical conformations of PE’s

with those of uncharge@17] wormlike chains. Figure 10, 5 Note: 2 superimposed curves!

G(r)=(a(r=R)), (23

displays the PE end-to-end distributideolid line) along 4 1‘09(5)/%
with the WLC distribution(dashed lingin a case in which it

is not possible to collapse the two distributions on top of 3l 06

each other. The persistence length of the neutral WLC in the

figure was adjusted so that the location of the maxima of the 202

two distributions are the same. The plot of the uncharged it 3

WLC is for £,/L=0.56. The distribution is for a PE seg-
ment with € ,,/L=0.01, kL=1, andBL = 360.

Using these parameters, we also calculated the energy- 0.2 0.4 0.6 0.8
minimizing shape of a PEEQ. (16)] as shown in the inset of FIG. 11. (Color onling Comparison of the radial distribution

Fig. 10. It is obvious that end effects are not negligible in thisfnction of a PE forkL =100, €,0/L=0.0001, andsL =36 000,
case and that the response of the PE to the bending force \igth that of a neutral chain with the intrinsic persistence length

different from that of neutral chains. This example indicates¢,/L=0.876. The inset shows that when the two distributions col-
a correlation between regimes in which the statistical confortapse on top of each other, the PE bends with constant curvature at
mations of a PE chain and that of a WLC differ and circum-equilibrium.

r/L
1
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the effective persistence length of the charged chainéand forms a conscientious calculation of the actual shape of the
={Cogix [11]. It is noteworthy that in these regimes the bent PE. _ _
energy-minimizing shape of PE’s is an arc of circle in accor- Finally, we are able to characterize the shape of the dis-
dance with the approximation utilized by Odijk in his deri- torted PE segment in terms of “shoulder” regions, immedi-
vation of Eq.(6). ately adjacent to the end points of the chain, at which the
Figure 9 compares the values of electrostatic persistenceurvature is significantly greater than in the chain’s interior.
length ¢, obtained by radial distribution functiongollow It seems highly probable to us that issues of PE energetics
circles to Odijk’s formula(straight solid ling. In the figure, —are intimately connected to the quantitative features of these
the electrostatic persistence length based on(E2).is also ~ shoulder regions. We are not yet able to claim complete reso-
plotted (triangles. For small values ofL, {.'s obtained lution of the questions associated with the energetics and
through two different noted methods, coincide with Odijk’s conformational statistics of rodlike PE chains. However, the
persistence lengthogy . As AL increases, the deviation of fact that one can, at least, in principle, systematically inves-
€ from €4y becomes more significant. However, the elec-tigate the equilibrium properties of a torqued PE segment

trostatic persistence length obtained through the radial distridives rise to the expectation of substantial progress in the
bution function and the one found by using the “real” shapecharacterization of the action of the important biomolecules

of the chain match each other quite well. in the family of PE's.
As we decrease the quantiilL, the persistence lengths
obtained by distribution function and energy-minimizing ACKNOWLEDGMENTS

shape also start to deviate from each other. This points to the The authors would like to acknowledge helpful discus-
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persistence length is not well justified in all regimes and tharE ) .
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Our investigation of the equilibrium shape of a bent PE&and support during his visit.
has yielded three striking results. The first is the fact that the
Odijk formula, Eq.(6), for the persistence length applies APPENDIX A: EXPRESSION OF THE ENERGY
almost perfectly to the case of a fluctuating PE when the bent OF THE BENT PE IN A COSINE BASIS SET
equilibrium segment has a constant curvature. This is consis-

tent with one of the fundamental assumptions underlying the In this appendix, we outline the T“ethf’d _by which one
derivation by Odijk[11]. expands the energy of the bent PE in a basis set that auto-

The second result is a suggestion for an improved Calcur_natically satisfies the free boundary conditions at the end of

lation of the persistence length based on the energy of thg1e rod. We begin by expressing the distortion of the rod in

bent PE. This approach appears to yield results in mucFﬁrmS of the two-dimensional vectar= (tyt,). This means

closer accord with the calculations of the radial distributiont"at

function of fluctuating PE segments, even in regimes in

which Eq.(6) does not work. We find that the fundamental t(s)= (ax(s),a(s),1) _ (A1)
tactic of extracting a persistence length from the equilibrium Vi+ag(s)+al(s)

energy of a bent PE yields excellent predictions for the ef-

fective persistence length of an ensemble of fluctuating PE'§Jsing the Fourier representation of the screened Coulomb
over a very wide range of parameters—if, however, one perinteraction, we find

VII. CONCLUSIONS

4ar L L
ZJ’o dsfo ds' explik-[r(s)—r(s")]}

(2m)% K?+ k

47w (L L . s’ ik (s .
—f dsJ' ds’ ex 'kyf dua(u)—7f dua(u)?+ik,(s'—s)
0 S S

f d

(2m)? K2+ k)0

f Pk _d de de' s -9 1 [ fs'd (u)

=| —————| ds| ds € -k, ua(u
2m)2 k?+k?Jo o 2\ s

ik, [

— —2|® dua(u)?+0(a%)
2 Js

L L e—K|f(S)—r(5')\ d3k
J dsJ ds’

0 o |r(s)—r(s")]

3k

2

. (A2)
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The quantityk, is the projection of the wave vectdr on the xy plane. The quantitk, is the z component of that
three-dimensional vector. Next, we use the series expar&gi®n= ﬁEﬁzoAncoshws/L) as appropriate for the open-end
boundary condition, and assume for simplicity thais, on average, oriented along thexis so thatA0=1/\/§f'5dsa(s)
=0. This leads to the following representation of the Hamiltonian of the PE rod:

BL

k T - E (nm) A7+ n; An-ArEnm, (A3)
where
k,L\  [k,L #(n—m)
oA foo dk o o (ld)2+ K2+ K> - sin| 5~ Jsinf 5= ——
= rnm) .2 (e TN pExe cog 5 (n—m) k[ k,—(n—m)m/L]
(kL wn) (kL wm)\] k,L k,L w(n+m)
SIN| 7—7 Sin 7—7 N sin| — 2 Si 2 T
T (K= n7/L)(k,—mmiL) __CO 7 (ntm K K,— (n+m)m/L]
k,L an k,L mm
sin| =+ - Jsin| 5~~~ "
(K, +na/L)(k,—ma/L) (A4)

are the elements of the electrostatic energy matrix in thélere, the total arclength of the rod is assumed td_b&he
cosine basis set. It is now sufficient to replaggs) by relationship between the kern€(s,s’) as given by Eq(18)

0,(s), and similarly fora(s). and the energy operat@t(s,s’) as given by Eq(8) is
A thorough investigation of the energy matfikq. (A3)] )
is given in Refs.[15,16. The requirement that the coarse f : " M ey — (e o
graining lengthb not exceed the smallest wavelengths ap- 0 ds"H(s,sK(s",5)= &(s=s"). (B2)

pearing in the cosine basis set puts a restriction on the size of _ _ _ _
the matrix energy. If the length of the PElisthis means that To obtain the proportionality constant in E(B1), let us
the sizeN of the basis set satisfidé<L/b. At no point in  assume that the angle s+0 is — 6,/2, while the angle at

our calculations was this inequality violated. s=L is 6y/2. Then, we have
An advantage of the cosine basis set, quite aside from
automatic satisfaction of the open boundary conditions, is o(s) = 0o K(s,00—K(s,L) (B3)

that whenn andm are large, the matrix elements in E&3) T2 K(O,L)—K(0,0°

are dominated by those for whiain=n. This reflects the _ o _ _
dominance of elastic energy at short wavelengths. The above kernel is symmetric, in th&(x,y) =K(y,x); fur-
thermore, there is reflection symmetry in the looped rod in

that K(0,0)=K(L,L). The next step is to note that the en-

APPENDIX B: CALCULATION OF THE MINIMUM - .
ergy of the rod is the expectation value of the energy opera-

ENERGY OF A BENT ROD

tor, i.e.,
In this appendix, the minimum energy of a charged chain e 1L
tha'g is shghtly deformed about the rodhke_conflguratlon is c _f f dsds 6(s)H(s,s') 6(s'). (B4)
derived with the use of Eq18). We begin with the expres- kgT 2
sion for the angle when the ends of the rod have been
torqued: If we plug in the solution(B3) for 4(s) in Eq. (7) and make
use of relation(B2), we end up with the expression in Eq.
0(s)xK(s,00—K(s,L). (B1) (21) for the energy of the bent rod.
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