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We report on a study of the shape of a stiff, charged rod that is subjected to equal and opposite force couples
at its two ends. Unlike a neutral elastic rod, which forms a constant curvature configuration under such
influences, the charged rod tends to flatten in the interior and accumulate the curvature in the end points, to
maximally reduce the electrostatic self-repulsion. The effect of this nonuniform bending on the effective
elasticity and on the statistical conformations of a fluctuating charged rod is discussed. An alternative definition
for the electrostatic persistence length is suggested. This definition is found to be consistent with a correspond-
ing length that can be deduced from the end-to-end distribution function of a fluctuating polyelectrolyte.
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I. INTRODUCTION AND SUMMARY

Given the ubiquity of charged linear structures in biolog
and their fundamental importance to essential processe
living systems, the relationship of Coulomb interactions
the mechanical properties of polyelectrolytes is a topic
considerable interest. Indeed, there have been a numb
theoretical@1–6# and experimental@7–9# studies on the be
havior of charged polymeric chains, with an eye to elucid
the various influences that control their equilibrium and s
tistical characteristics. In spite of the considerable effort
pended, there is, as yet, no comprehensive theoretical
scription of the way in which charged chains respond
environmental influences.

The basic theoretical model of a polyelectrolyte cha
~PE! is simplicity itself. A rod with an intrinsic elasticity
quantified in terms of a bending modulus carries charg
either uniformly distributed along it, or concentrated
points along its axis. The energy of this chain consists
tirely of the elastic energy associated with bending of the
and the electrostatic energy of interaction of the charges
the rod. The electrostatic interaction may be screened
counterions in solution in the vicinity of the rod. This scree
ing is assumed to be Debye-like.

The characterization of the effects of intrinsic stiffness
a neutral inextensible, or wormlike, chain~WLC! in terms of
a persistence lengthis by now well established@10#. This
quantity describes the exponential decay of correlations
the orientation of the backbone of a WLC. It is directly r
lated to the energy stored in a short segment of the W
which has been bent as a result of the application of fo
couples at its end points. An extension of the persiste
length to the case of a PE, due to Odijk@11# utilizes this
basic approach to obtain that quantity in the case of a s
1063-651X/2003/67~6!/061805~10!/$20.00 67 0618
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charged rod. In calculating the energy of the bent segmen
the PE, Odijk assumed that the shape of this segment is
affected by the Coulomb interactions, an assumption sha
by all other expressions for the effective persistence len
of a PE of which we are currently aware@12–14#. This leads
to a remarkably successful analytic expression for the per
tence length@see Eq.~6! in the following section#. This ap-
proximation does not work in all regimes; in previous wor
we have identified the regimes in which this assumption
correct and other regimes in which it fails to give rise
accurate answers@15,16#.

The general question of the applicability of the notion o
persistence length to a PE in the rodlike limit was explor
in the above mentioned work@15,16# by the current authors
This study was conducted in the context of a calculation
the thermal distribution of end-to-end distances of an
semble of rodlike PE’s. It was found that there are regime
which this distribution differs substantially from the corr
sponding distribution for neutral WLC’s. When this is th
case, the effective persistence length associated with the
to-end distance distribution~or radial distribution! is not con-
sistent with the formula derived in Ref.@11#. The effective
persistence length is obtained in Refs.@15,16# by matching
the PE distribution as closely as possible to the radial dis
bution of uncharged wormlike chains@17#.

In this paper, we undertake a calculation of the effect
persistence length. Our approach is identical in overall p
losophy to that utilized by Odijk@11#. A rod is subjected to
external torques that causes it to bend. The energyE in the
bent rod is calculated and related tou0, the difference in
angles at the two ends, as shown in Fig. 1. The precise r
tionship between the energyE in the rod and the angleu0 is

E
kBT

5
u0

2

2

,p

L
. ~1!
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Here,L is the total length of the rod. In Odijk’s approac
it is assumed that the bent rod takes the form of an arc
circle. This is true if all of the energy is elastic. However,
the case of interest here, a significant portion of the ene
may be electrostatic in nature. The fundamental impro
ment over Odijk’s calculational method is that we determ
the actual shape of the bent rod, taking into account
effects of screened and unscreened electrostatic interact
We assume that the shape taken is controlled by the req
ment that, in the absence of thermal fluctuations, the
minimizes its total energy. The expression obtained for
rod’s shape is directly related to the inverse of the Ham
tonian that relates the energy of the bent rod to its distor
from a straight line. This approach leads to results for
shape of the rod and to alterations in the energy and
persistence length as defined in Eq.~1!.

We find that there are, in certain regimes, dramatic diff
ences between the shape of a short PE under the influen
force couples at its ends and the shape of a similarly torq
WLC. In such regimes, the curvature of a PE is concentra
at its ends, while the WLC distorts into a circular arc,
illustrated in Fig. 2. In regimes in which the shapes of the
and WLC coincide, we find that the Odijk’s formula for th
effective persistence length is accurate. However, when
shape of the bent PE is inconsistent with the assumptio
constant curvature, the electrostatic persistence length
rived from Eq.~1! deviates from Odijk’s result. On the othe
hand, this persistence length is compatible with the per
tence length deduced from the statistics of the conformat

FIG. 2. ~Color online! The energy-minimizing shape of
charged rod with full treatment of electrostatic interactions and
effects @plot ~a!#. Plot ~b! corresponds to the energy-minimizin
shape of a WLC. A segment of a neutral WLC forms an arc o
circle, while the curvature of a PE segment can be concentrate
its ends.

FIG. 1. The bent rod. The angleu0 between the two ends i
illustrated. The relationship between the angleu0 and the energyE
stored in the bent rod is displayed in Eq.~1!.
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of a fluctuating PE described by the radial distribution fun
tion @15,16#.

The rest of the paper is organized as follows. Section
introduces the basic elastic model for PE’s, followed by
general description on how one obtains the equilibriu
shape of a PE in Sec. III. The results for the shape of a
are presented in Sec. IV, and it is shown in Sec. V how
persistence length can be deduced from the PE profile.
suggested electrostatic persistence length is then comp
with Odijk’s formula and also the persistence length that o
can extract from the radial distribution of the PE in Sec. V
which is then followed by concluding remarks in Sec. V
Some details of the calculations are relegated to append

II. MODEL ELASTICITY FOR POLYELECTROLYTES

As noted above, we treat the polyelectrolyte as an in
tensible charged rod. The total energy of such a rod is
sum of the intrinsic elasticity and the screened electrost
interaction energy. We assume that the electrostatic inte
tion is screened by counterions that adjust more or less
stantaneously to changes in the overall shape of the polye
trolyte. Because of the inextensibility of the PE’s und
consideration@11,17#, we adopt Kratky and Porod WLC
model to describe the bending energy of the chain@18#. In
this model, polymers are represented by a space curver (s)
as a function of the arc length parameters. The total energy
of the chain is given by

E
kBT

5
,p0

2 E
0

L

dsS dt~s!

ds D 2

1
b

2E0

L

dsds8
e2kur (s)2r (s8)u

ur ~s!2r ~s8!u
,

~2!

wheret is the unit tangent vector. The second term in the E
~2! is the Debye-Hu¨ckel potential, in which screening is con
trolled by the Debye lengthk21 that is a measure of the
ionic strength of the solvent. The quantityb5,B /b2 is the
strength of the electrostatic interaction withb the average
separation between neighboring charges and,B5e2/ekBT
the Bjerrum length. The quantitye is the dielectric constan
of the ion-free solvent.

The chain is assumed to be sufficiently stiff so that e
cluded volume does not play a role. We will consider PE
whose lengthL is either comparable with or long compare
to the intrinsic persistence length,p0. In both cases, we re
strict our consideration to regions in which the combinati
of intrinsic stiffness and repulsive strength of the Coulom
interaction keeps the chains in their rodlike limit@19#. We do
not take into account the fluctuation in the charges locali
to the chain and in the counterion system that can give ris
attractive interactions leading to chain collapse@20,21#.

Orienting the tangent vector at one end of the PE,t(0),
so that it points in the positivez direction, we characterize
t(s) by two angles of rotation: ux(s)5arctan@tx(s)/
A12tx

2(s)2ty
2(s)# in the xz plane anduy(s)5arctan@ty(s)/

A12tx
2(s)2ty

2(s)# in the yz plane. For polyelectrolytes in
the rodlike limit,ux(s) anduy(s) are small. With the help of

the relationr (s)2r (s8)5*s
s8du t(u), we are able to expand

d

a
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both the bending energy and the screened Coulomb inte
tion about the rodlike configuration up to quadratic order
uW (s)5„ux(s),uy(s)… following Ref. @10,11#. In this case, Eq.
~2! can be written as

E
kBT

5
,p0

2 E
0

L

dsH S dux~s!

ds D 2

1S duy~s!

ds D 2J
1

b

2E0

LE
0

L

ds ds8L~s,s8!$ux~s!ux~s8!

1uy~s!uy~s8!%, ~3!

where the electrostatic kernel is given by

L~s,s8!5E
0

L

ds1E
s1

L

ds2

@11k~s22s1!#e2k(s22s1)

~s22s1!3

3$~s22s1!@Q~s2s1!2Q~s2s2!#d~s2s8!

2@Q~s2s1!2Q~s2s2!#@Q~s82s1!

2Q~s82s2!#%, ~4!

with Q(s) the Heaviside step function.
Equations~3! and ~4! constitute the expression for th

energy utilized by Odijk in his calculation of the electrosta
persistence length. The essence of this calculation is to
strain the difference between the orientation of the tang
vectors at each end of the rod,u(L)2u(0)[u0 and then to
determine the energyE of the bent rod with the use of th
formulas in Eqs.~3! and ~4!. The persistence length,p is
then given by Eq.~1!. In his calculation of the total energy o
a bent segment of PE, Odijk utilizes the approximation t
the segment is characterized by a constant curvature@11#.
That is, he assumes that the electrostatic interaction doe
cause the shape of the PE to differ from that of a W
segment. According to this picture,ux,y(s) are linear func-
tions ofs. One can then obtain an explicit, analytical expre
sion for the total energy of a bent polyelectrolyte segme
which leads directly to the following prediction for the pe
sistence length of such a charged rod through Eq.~1!:

,p5,p01,Odijk , ~5!

where

,Odijk5
bL2

12 Fe2kLS 1

kL
1

5

~kL !2
1

8

~kL !3D
1

3

~kL !2
2

8

~kL !3G . ~6!

In the following section, we sketch a general method
calculating the equilibrium shape of elastic charged rods
der the influence of applied bending forces. This leads t
prescription for the calculation of persistence length ba
on the energy of the bent PE.
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III. THE GENERAL STRATEGY FOR FINDING
THE ENERGY-MINIMIZING SHAPE
OF A BENT POLYELECTROLYTE

As noted previously, the principal advance in our a
proach to the bending energy of a PE is that we calculate
actual shape of the bent rod. Here, we discuss the gen
approach to this calculation. The energy of the rod in Eq.~3!
can be expressed as the expectation value of the energy
eratorH, i.e.,

E
kBT

5
1

2E0

LE
0

L

dsds8u~s!H~s,s8!u~s8!. ~7!

whereH, the bilinear ‘‘energy’’ operator, is equal to

H52,p0

d2

ds2
d~s2s8!1bL~s,s8!. ~8!

To obtain the response of a polyelectrolyte to for
couples at its two ends, we minimize the energy express
in Eq. ~7! with respect toux,y(s), subject to the following
boundary conditions:

ux~0!50,

uy~0!50,

ux~L !5u0x ,

uy~L !5u0y , ~9!

where the anglesu0x andu0y are assumed to be very sma
in order to keep the chain in the rodlike limit. The resultin
Euler-Lagrange equations are completely decoupled with
spect to both variablesux(s) anduy(s); therefore, we focus
on planar deformations that can be characterized entirel
terms of a single angleu(s). In this case, the boundary con
ditions are simply

u~0!50,

u~L !5u0 . ~10!

We enforce these boundary conditions via Lagrange mu
pliers by adding the terms

2E
0

L

$l0d~s!u~s!2lLd~s2L !u~s!%ds ~11!

to the energy in Eq.~7!. Then, we seek the solution tha
minimizes the energyE in terms of an eigenfunction expan
sion of the form

umin~s!5 (
n50

`

cncn~s!, ~12!

where cn(s) are eigenfunctions of the bilinear Eule
Lagrange energy operatorH in Eq. ~8!.
5-3
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The solution to the minimization equation, which is no
in terms of the amplitudescn , is

cj5
l0c j~0!1lLc j~L !

e j
, ~13!

wheree j ’s are the eigenvalues of Eq.~8!. The values ofe j ’s
depend on the three dimensionless parameters,bL, kL, and
,p0 /L. Rotational invariance implies that there must be o
eigenfunction,c0(s)51/AL, with eigenvaluee050. This is
due to the fact that simply tilting the rod, which yields
constant value foru(s), does not change the energy. A
other eigenfunctions possess positive eigenvalues. Equa
~13! shows that there is a singularity ate050. We can re-
move the singularity by adding a term of the for
(g/2)u(s)2 to the energy in Eq.~7!. The parameterg is a
small ‘‘gap’’ parameter that will be set equal to zero at t
end. The quantityg is thus added to the denominator of E
~13!, and there is no longer a singularity ate050 unlessg
50.

We adjust the Lagrange multipliersl0 and lL using the
boundary conditions of Eq.~10!. The two equations that lea
to the results for thel ’s are

u~0!5
1

AL

l01lL

g
1 (

n51

`

cn~0!
l0cn~0!1lLcn~L !

en1g
50,

~14!

u~L !5
1

AL

l01lL

g
1 (

n51

`

cn~L !
l0cn~0!1lLcn~L !

en1g
5u0 .

~15!

The above equations reveal that the only possible way
which we can obtain finite values for the angles at 0 andL is
to have lL→2l0 as g→0. Let us setl01lL5gAAL,
whereA is a constant that is set by adjusting boundary c
ditions. The general solution foru(s) in the limit g50 is,
then,

u~s!5A1l0(
n51

`

cn~s!
cn~0!2cn~L !

en
. ~16!

The limiting result of equal and oppositel ’s makes sense
if we think of those Lagrange multipliers in terms of torque
or force couples, applied at the two ends of the PE segm
Given such a picture, we know that unless the two torq
are equal and opposite, there will be an uncontrolled rota
of the segment. It is, in fact, possible to set up a calculat
of the shape of a segment under the influence of s
torques. Energy minimization yields equations for the ang
at the ends of the segment that are precisely as given by
~14! and~15!, with thel ’s proportional to the torques at eac
end.

In the following section, we calculate numerically th
energy-minimizing shape of a charged rod and compar
with an arc of circle. This will lead to greater insight into th
influence of energetics on the classical shape of a bent
ment of PE. It will also allow us to test the fundamen
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relevance of an energy calculation such as the one descr
above to the persistence length of a PE, defined in term
its conformational statistics.

IV. NONUNIFORM BENDING OF CHARGED
ELASTIC RODS

The expression foru given in Eq.~16! can also be written
as

u~s!5A1l0@K~s,L !2K~s,0!#, ~17!

where

K~s,s8!5 (
n51

`
cn~s!cn~s8!

en
. ~18!

It is readily demonstrated that the quantityK(s,s8) de-
fined in Eq.~18! is the inverse of the energy operator in E
~8!. The operatorK(s,s8) has been calculated with the use
a cosine function basis set in Refs.@15,16#. We utilize our
previously obtained results for the inverse operator to
merically calculate the quantityu in Eq. ~16!. An outline of
the construction of the energy in this basis set is containe
Appendix A.

In the absence of electrostatic interaction, a bent ela
rod conforms to an arc of a circle, which is described by
linear solution for Eq.~17!. In Fig. 3, the energy-minimizing
shapes of charged rods, withkL510, ,p0 /L50.5, and dif-
ferent values ofbL, are compared with that of a correspon
ing neutral chain. As the figure clearly illustrates,u(s) that
depends linearly on arc lengths does not correspond to th
minimum energy configuration of bent charged elastic ro
which tend to flatten in the interior and accumulate curvat
in the exterior~see Fig. 2 above!. This is in part because th
electrostatic self-repulsion is lower at the end points due
the reduction in repelling neighboring charges there. Figur
also highlights the fact that deviations from constant cur
ture become more pronounced as the charging strengthbL

FIG. 3. ~Color online! Plots of the energy-minimizing shape fo
charged elastic rods@Eq. ~16!# at kL510, ,p0 /L50.5, andbL
5300 ~dashed line!, bL51800~dash-dotted line!, bL57200~dot-
ted line!. The neutral chain forms an arc of a circle~represented by
a straight line!. As bL increases, charged chains tends to flat
more in the interior and accumulate curvature in the end points.
extreme range ofbL is intended to clearly indicate the influence
charging on shape.
5-4
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ANOMALOUS BENDING OF A POLYELECTROLYTE PHYSICAL REVIEW E67, 061805 ~2003!
increases. This tendency reinforces the notion that Coulo
repulsion underlies the concentration of curvature near
ends of the bent rod.

We have also investigated the influence of inverse scre
ing lengthk and absolute lengthL on the shape of a bent P
segment. Figure 4 illustrates the effects of a change ofk on
the arclength dependence ofu. In this figure, the bare per
sistence length,p0550 nm and the charging parameterb
525 nm21 corresponding to DNA are used, and the leng
of the segment is set equal to 100 nm. It is apparent tha
the screening length increases, the shape of the bent seg
deviates more and more from an arc of a circle.

Additionally, we have looked at the consequences on
shape of changes in the length of the segment, keeping
other parameters fixed. Figure 5 shows how changing
length L causesu(s) to deviate from a straight line. As in
Fig. 4, we have set,p0 equal to 50 nm andb equal to
25 nm21, as corresponding to DNA. The inverse screen
lengthk in Fig. 5 is fixed at 0.1 nm21.

The nonlocal electrostatic interaction seems to favor a

FIG. 4. ~Color online! Plot of u(s)/u0 for a charged rod, corre
sponding to various values of the inverse screening lengthk. In all
plots ,p0550 nm, b525 nm21 ~corresponding to DNA!, and L
5100 nm. The values of the screening parameters arek
50.5 nm21 ~thick line!, k50.1 nm21 ~dash-dotted line!, k
50.05 nm21 ~dotted line!, and k50.02 nm21 ~dashed line!, re-
spectively.

FIG. 5. ~Color online! Plot of u(s)/u0 for a charged rod for
which the lengthL is allowed to vary. In all curves,p0550 nm,
b525 nm21 ~corresponding to DNA!, andk50.1 nm21. It is evi-
dent that longer segments behave more like a WLC in that w
bent they take a shape with a constant curvature. This reflects
influence on the shape of the combinationkL, and is consistent
with the tendencies indicated in Fig. 4.
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composition of the linear profile into a piecewise linear on
in which the interior takes up a lower curvature and the t
end segments in the exterior acquire a higher curvature.
relatively sharp changes in the slope that result in ‘‘sho
ders’’ in the profile take place symmetrically at positio
denoted bysc andL2sc , which can be defined in terms o
the intersection points of the tangents to the various s
ments of the profile, as illustrated in Fig. 6.

The position of the shouldersc is a monotonically de-
creasing function ofbL as shown in Fig. 7. The effect o
,p0 /L on thesc is also illustrated in Fig. 7. As seen in th
figure, the shouldersc increases upon increasing the intrins
persistence length of the chain. The dependence ofsc on
screening, on the other hand, appears to be more com
cated. One generally expects that askL increases, end ef
fects become less significant, and the value ofsc moves to-
ward zero, resulting in a smoothing of the curvature alo
the chain. However, this is true only for strong screenin
Figure 8 represents the dependence ofsc on kL in the strong
charging regime, where we observe thatsc has a relatively
weak dependence on screening:sc slowly increasesaskL is
increased and then starts decreasing with further increas
kL.

One can understand the appearance of the shoulder re
as an end effect. The nonlocal nature of the electrostatic s
interaction leads to enhanced repulsion in the interior of
PE as compared to the end segments. This is mainly du

n
he

FIG. 6. ~Color online! The position of the shouldersc can be
obtained as the crossover point of the tangents to the various
ments of the profile.

FIG. 7. The position of the shouldersc as a function of the
charging parameterbL, for kL50 and,p0 /L50.01 ~crosses!, 0.1
~open circles!, and 0.5~filled circles!. As expected,sc increases as
the rod becomes intrinsically more stiff.
5-5
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ZANDI, RUDNICK, AND GOLESTANIAN PHYSICAL REVIEW E 67, 061805 ~2003!
the fact that there are fewer neighboring pairs at the
segments to contribute to the mutual repulsion. In ot
words, one might think of a crossover length scale at the
ends, below which the intrinsic rigidity~that yields a local
resistance to bending! dominates the energetics of the cha
while beyond that length scale~i.e., in the interior of the PE!
it is the combination of the intrinsic rigidity and the electr
static repulsion that controls the energetics. Interestin
such a crossover length scale has been introduced by B
and Joanny in their study of the length-scale dependenc
the PE rigidity@1,2#. It is important to note that the Barra
Joanny crossover length is defined for the crossover in
fluctuations of the anglêu(s)2& ~that also has a piecewis
linear dependence ons). Since the distribution of the angl
u(s) as controlled by the Hamiltonian in Eq.~7! is Gaussian,
both^u(s)2& and the energy minimizingu ~Eq. 17! are linear
functions ofH(s,s8)21 @Eq. ~8!#. Thus, we expect that, in
general, the two crossover length scales coincide. Barrat
Joanny propose an expression for the crossover length a

sc,BJ.A ,p0

b14,p0k2
, ~19!

which exhibits the limiting forms ofsc,BJ;A,p0 /b for
kA,p0 /b!1 andsc,BJ;k21 for kA,p0 /b@1.

The Barrat-Joanny crossover length shows a qualitativ
similar behavior to the shoulder positionsc as described
above, except for the slow initial increase in Fig. 8~for sc as
a function ofk).

There is a way to reconcile this behavior with the Barr
Joanny picture. This can be achieved by considering the
that in their derivation of the expression in Eq.~19! above,
they have neglected a logarithmic dependence in the ele
static nonlocal kernel for technical simplicity. While it is no
possible to calculate the correct crossover length in a c
pact form as in Eq.~19! when the logarithmic factor is take
into account, one can extract the limiting forms of theaug-
mentedBarrat-Joanny~aBJ! crossover length as

FIG. 8. ~Color online! The position of the shouldersc as a
function of the screening parameterkL, for ,p0 /L50.5 andbL
52500. The reentrance behavior is characterized by an initial s
increase followed by a relatively faster decay at larger values of
screening parameter.
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k21 for kA,p0 /b@1,
~20!

which now exhibits an initial increase in qualitative agre
ment with Figs. 7 and 8. While this picture can qualitative
account for the aforementioned behaviors, we have not
been able to achieve a quantitative characterization of
shoulder positionsc as a function of the three-dimensionle
parameters,p0 /L, kL, andbL, and, in particular, compare
it with the dependencies as suggested by Eq.~20! above, due
to the insufficiency of the numerical data.

Having obtained the shape of a charged rod numerica
we can now follow Odijk and calculate the persistence len
of PE’s.

V. DERIVATION OF THE PERSISTENCE LENGTH
USING ODIJK’S METHOD

There is a straightforward way to calculate the energy o
bent rod, based on the expression for the angle as a func
of arc length. The quantityu(s) given in Eq. ~17! is, to
within an additive constant, proportional toK(s,L)
2K(s,0), and the energy of a bent charged rod can be w
ten as

E
kBT

5
u0

2

2

1

K~0,0!2K~0,L !
. ~21!

Details of the calculation leading to Eq.~21! are presented
in Appendix B. According to the definition of the persisten
length in terms of the energy of the bent rod, Eq.~1!, we
have

,e5
L

K~0,0!2K~0,L !
2,p0 , ~22!

where,e is the electrostatic persistence length of the ch
as defined in the Sec. II. It is important to note that the ker
K(s,s8) depends on the parametersbL, kL, and ,p0 /L
through the eigenvalues and eigenfunctions of Eq.~8!. Fig-
ure 9 shows the values of the electrostatic persistence le
,e obtained by Eq.~22! for kL510 and,p0 /L50.5 at dif-
ferent values ofbL ~triangles!. Odijk’s persistence length a
given by Eq.~6! is also plotted in the figure for compariso
~solid line!. For small values ofbL, ,e coincides with the
Odijk persistence length,Odijk . As bL increases, the devia
tion of ,e and ,Odijk becomes more significant. The figur
also displays the value of the electrostatic persistence le
that one can infer from the distribution of end-to-end d
tances of an ensemble of fluctuating rodlike PE segme
~open circles! @15,16#. There will be more on this subject in
the following section.

Our general observation from the comparison of,e with
,Odijk is that when the two quantities are equal, the b

w
e
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ANOMALOUS BENDING OF A POLYELECTROLYTE PHYSICAL REVIEW E67, 061805 ~2003!
charged rod is close in shape to an arc of a circle. Tha
u(s) as a function ofs is nearly a straight line as in the cas
of a neutral chain. This indicates that as charging increa
end effects become more important and the description
PE’s as neutral chains with an adjusted persistence leng
inappropriate. It is clear that end effects play a key role in
elasticity of PE’s. Such effects are also apparent in the
tistical conformations of the charged rods.

VI. THE INFLUENCE OF ‘‘END EFFECTS’’
ON THE STATISTICAL CONFORMATION OF PE’S

The study of the end-to-end radial distribution functi
G(r ) of a rodlike PE provides an excellent gauge of t
statistical conformation of polymers. Using the express
for energy given in Eq.~2!, we have obtained values for th
quantity

G~r !5^d~r2R!&, ~23!

whereR5r (L)2r (0). The average in Eq.~23! is over an
ensemble of PE chains. The functionG(r ) is, then the prob-
ability that a given chain in the ensemble will have an en
to-end distance equal tor @15,16#.

With the use of the radial distribution function, we ha
been able to compare the statistical conformations of P
with those of uncharged@17# wormlike chains. Figure 10
displays the PE end-to-end distribution~solid line! along
with the WLC distribution~dashed line! in a case in which it
is not possible to collapse the two distributions on top
each other. The persistence length of the neutral WLC in
figure was adjusted so that the location of the maxima of
two distributions are the same. The plot of the uncharg
WLC is for ,p /L50.56. The distribution is for a PE seg
ment with,p0 /L50.01, kL51, andbL5360.

Using these parameters, we also calculated the ene
minimizing shape of a PE@Eq. ~16!# as shown in the inset o
Fig. 10. It is obvious that end effects are not negligible in t
case and that the response of the PE to the bending for
different from that of neutral chains. This example indica
a correlation between regimes in which the statistical con
mations of a PE chain and that of a WLC differ and circu

FIG. 9. ~Color online! The electrostatic persistence length,e

obtained by Eq.~22! for kL510 and,p0 /L50.5 at different values
of bL, and comparison with Odijk’s persistence length as given
Eq. ~6!, and the electrostatic persistence length that can be ded
from the radial distribution function of PE’s@15,16#.
06180
s,

s,
of
is

e
a-

n

-

’s

f
e
e
d

y-

s
is

s
r-
-

stances under which the classical, energy-minimizing sh
of a PE segment does not trace out the arc of a circle.

There also exist regimes in which the conformational s
tistics of PE chains in the rodlike limit are identical to tho
of WLC’s with adjusted persistence lengths@22#. For such
cases, PE and WLC distributions are indistinguishable to
unaided eye. Figure 11 illustrates an example of this regi
The distribution function of the PE with,p0 /L50.0001,
kL5100, andbL536 000 completely obscures the distrib
tion function of a WLC with the intrinsic persistence leng
,p /L50.876. As in the previous example, the energ
minimizing shape of the PE is shown in the inset. It is cle
that the energy-minimizing shape of the PE is not dist
guishable from that of a neutral chain, as the PE also be
with a constant curvature in this example.

We have found that whenever there is a virtually perf
collapse of the distribution function of a PE onto that of
neutral chain, the persistence length of the neutral chain
lows Odijk’s prediction, in that,,p5,e1,p0, where,p is

y
ed FIG. 10. ~Color online! Comparison of the radial distribution
function of a PE~solid line! for kL51, ,p0 /L50.01, andbL
5360, with that of a neutral chain~dashed line!. As the inset
shows, when the two distributions do not match, the equilibri
configuration of a bent PE is not given by a constant-curvat
profile.

FIG. 11. ~Color online! Comparison of the radial distribution
function of a PE forkL5100, ,p0 /L50.0001, andbL536 000,
with that of a neutral chain with the intrinsic persistence leng
,p /L50.876. The inset shows that when the two distributions c
lapse on top of each other, the PE bends with constant curvatu
equilibrium.
5-7
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ZANDI, RUDNICK, AND GOLESTANIAN PHYSICAL REVIEW E 67, 061805 ~2003!
the effective persistence length of the charged chain and,e
5,Odijk @11#. It is noteworthy that in these regimes th
energy-minimizing shape of PE’s is an arc of circle in acc
dance with the approximation utilized by Odijk in his de
vation of Eq.~6!.

Figure 9 compares the values of electrostatic persiste
length ,e obtained by radial distribution functions~hollow
circles! to Odijk’s formula~straight solid line!. In the figure,
the electrostatic persistence length based on Eq.~22! is also
plotted ~triangles!. For small values ofbL, ,e’s obtained
through two different noted methods, coincide with Odijk
persistence length,Odijk . As bL increases, the deviation o
,e from ,Odijk becomes more significant. However, the ele
trostatic persistence length obtained through the radial di
bution function and the one found by using the ‘‘real’’ sha
of the chain match each other quite well.

As we decrease the quantitykL, the persistence length
obtained by distribution function and energy-minimizin
shape also start to deviate from each other. This points to
fact that replacing a PE chain with a WLC with an adjust
persistence length is not well justified in all regimes and t
one should exercise care in the utilization of the notion of
electrostatic persistence length.

VII. CONCLUSIONS

Our investigation of the equilibrium shape of a bent P
has yielded three striking results. The first is the fact that
Odijk formula, Eq. ~6!, for the persistence length applie
almost perfectly to the case of a fluctuating PE when the b
equilibrium segment has a constant curvature. This is con
tent with one of the fundamental assumptions underlying
derivation by Odijk@11#.

The second result is a suggestion for an improved ca
lation of the persistence length based on the energy of
bent PE. This approach appears to yield results in m
closer accord with the calculations of the radial distributi
function of fluctuating PE segments, even in regimes
which Eq. ~6! does not work. We find that the fundament
tactic of extracting a persistence length from the equilibri
energy of a bent PE yields excellent predictions for the
fective persistence length of an ensemble of fluctuating P
over a very wide range of parameters—if, however, one p
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forms a conscientious calculation of the actual shape of
bent PE.

Finally, we are able to characterize the shape of the
torted PE segment in terms of ‘‘shoulder’’ regions, immed
ately adjacent to the end points of the chain, at which
curvature is significantly greater than in the chain’s interi
It seems highly probable to us that issues of PE energe
are intimately connected to the quantitative features of th
shoulder regions. We are not yet able to claim complete re
lution of the questions associated with the energetics
conformational statistics of rodlike PE chains. However,
fact that one can, at least, in principle, systematically inv
tigate the equilibrium properties of a torqued PE segm
gives rise to the expectation of substantial progress in
characterization of the action of the important biomolecu
in the family of PE’s.
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APPENDIX A: EXPRESSION OF THE ENERGY
OF THE BENT PE IN A COSINE BASIS SET

In this appendix, we outline the method by which o
expands the energy of the bent PE in a basis set that a
matically satisfies the free boundary conditions at the end
the rod. We begin by expressing the distortion of the rod
terms of the two-dimensional vectora5(tx ,ty). This means
that

t~s!5
„ax~s!,ay~s!,1…

A11ax
2~s!1ay

2~s!
. ~A1!

Using the Fourier representation of the screened Coulo
interaction, we find
E
0

L

dsE
0

L

ds8
e2kur (s)2r (s8)u

ur ~s!2r ~s8!u
5E d3k

~2p!3

4p

k21k2E0

L

dsE
0

L

ds8 exp$ ik•@r ~s!2r ~s8!#%

.E d3k

~2p!3

4p

k21k2E0

L

dsE
0

L

ds8 expH ik'•E
s

s8
du a~u!2

ikz

2 E
s

s8
du a~u!21 ikz~s82s!J

5E d3k

~2p!3

4p

k21k2E0

L

dsE
0

L

ds8 eikz(s82s)F12
1

2 S k'•E
s

s8
du a~u! D 2

2
ikz

2 E
s

s8
du a~u!21O~a3!G . ~A2!
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The quantityk' is the projection of the wave vectork on the xy plane. The quantitykz is the z component of that
three-dimensional vector. Next, we use the series expansiona(s)5A2(n50

` Ancos(nps/L) as appropriate for the open-en
boundary condition, and assume for simplicity thatr is, on average, oriented along thez axis so thatA051/A2*0

Ldsa(s)
50. This leads to the following representation of the Hamiltonian of the PE rod:

E
kBT

5
,p0

2L (
n51

`

~np!2An
21

bL

2 (
n,m51

`

An•AmEnm , ~A3!

where

Enm5
4L

pnmE2`

` dkz

2p
~kz

21k2!lnF ~p/d!21k21kz
2

k21kz
2 G H cosFp2 ~n2m!GF sinS kzL

2 D sinS kzL

2
2

p~n2m!

2 D
kz@kz2~n2m!p/L#

2

sinS kzL

2
2

pn

2 D sinS kzL

2
2

pm

2 D
~kz2np/L !~kz2mp/L !

G2cosFp2 ~n1m!GF sinS kzL

2 D sinS kzL

2
2

p~n1m!

2 D
kz@kz2~n1m!p/L#

2

sinS kzL

2
1

pn

2 D sinS kzL

2
2

pm

2 D
~kz1np/L !~kz2mp/L !

G J ~A4!
th

e
p
e

ro
,

ai
is

-
ee

in
n-
ra-

.

are the elements of the electrostatic energy matrix in
cosine basis set. It is now sufficient to replaceax(s) by
ux(s), and similarly foray(s).

A thorough investigation of the energy matrix@Eq. ~A3!#
is given in Refs.@15,16#. The requirement that the coars
graining lengthb not exceed the smallest wavelengths a
pearing in the cosine basis set puts a restriction on the siz
the matrix energy. If the length of the PE isL, this means that
the sizeN of the basis set satisfiesN<L/b. At no point in
our calculations was this inequality violated.

An advantage of the cosine basis set, quite aside f
automatic satisfaction of the open boundary conditions
that whenn andm are large, the matrix elements in Eq.~A3!
are dominated by those for whichm5n. This reflects the
dominance of elastic energy at short wavelengths.

APPENDIX B: CALCULATION OF THE MINIMUM
ENERGY OF A BENT ROD

In this appendix, the minimum energy of a charged ch
that is slightly deformed about the rodlike configuration
derived with the use of Eq.~18!. We begin with the expres
sion for the angle when the ends of the rod have b
torqued:

u~s!}K~s,0!2K~s,L !. ~B1!
06180
e

-
of

m
is

n

n

Here, the total arclength of the rod is assumed to beL. The
relationship between the kernelK(s,s8) as given by Eq.~18!
and the energy operatorH(s,s8) as given by Eq.~8! is

E
0

L

ds9H~s,s9!K~s9,s!5d~s2s8!. ~B2!

To obtain the proportionality constant in Eq.~B1!, let us
assume that the angle ats50 is 2u0/2, while the angle at
s5L is u0/2. Then, we have

u~s!5
u0

2

K~s,0!2K~s,L !

K~0,L !2K~0,0!
. ~B3!

The above kernel is symmetric, in thatK(x,y)5K(y,x); fur-
thermore, there is reflection symmetry in the looped rod
that K(0,0)5K(L,L). The next step is to note that the e
ergy of the rod is the expectation value of the energy ope
tor, i.e.,

E
kBT

5
1

2E0

LE
0

L

dsds8u~s!H~s,s8!u~s8!. ~B4!

If we plug in the solution~B3! for u(s) in Eq. ~7! and make
use of relation~B2!, we end up with the expression in Eq
~21! for the energy of the bent rod.
-
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